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Abstract

A general formalism, based on the Takagi±Taupin
equations, for calculating rocking curves in perfect
t � l crystals is presented. It includes nonsymmetrical
scattering, refraction, and ordinary and anomalous
absorption. t and l may be varied independently. In
the limit of a semi-in®nite crystal, the standard results
from the fundamental theory are retrieved. For crystal
dimensions less than the extinction length, the theory
converges to the kinematical limit. Simulations for
germanium and silicon show signi®cant in¯uence of
crystal ®niteness. When dynamical effects are promi-
nent, the curves exhibit various degrees of asymmetry
and the full width at half-maximum is generally larger
than the corresponding Darwin width. This is attributed
to combined Laue and Bragg contributions which are
shifted with respect to each other owing to refraction.

1. Introduction

Calculation of rocking curves for perfect crystals is
commonly based on the fundamental theory of dyna-
mical scattering (Darwin, 1914; Ewald, 1916a,b, 1917;
Prins, 1930; von Laue, 1931; Ewald, 1937) with an
incoming plane wave impinging a semi-in®nite crystal
plate (Zachariasen, 1945; von Laue, 1960; James, 1962;
Batterman & Cole, 1964; Kato, 1974; Pinsker, 1978;
Authier, 1996). In a series of papers (Thorkildsen &
Larsen, 1998a,b,c, 1999; Larsen & Thorkildsen, 1998),
we have discussed primary extinction and absorption in
®nite perfect crystals. In the following, we extend our
treatment to include rocking curves as well. To our
knowledge, the only rigorous attempt to calculate
dynamical rocking curves in ®nite crystals is due to
Olekhnovich & Olekhnovich. They performed calcula-
tions for symmetrical scattering in perfect crystals with
square and cylindrical cross sections (Olekhnovich &
Olekhnovich, 1978, 1980). The results were however
only obtained for a limited range of the scattering angle
and over a small angular interval. Zachariasen (1967)
and Becker & Coppens (1974), in their works on
extinction, developed a formalism also suitable for
calculation of rocking curves for perfect convex crystals
within the framework of the kinematical theory.

In the present work, we consider rocking curves for
crystals with a rectangular t � l cross section. t and l may
be varied independently. The treatment includes
ordinary and anomalous absorption. Allowance for
nonsymmetrical scattering geometry² is also made
(Wilkins, 1978, 1981).

The basis of our calculations is the Takagi±Taupin
equations (Takagi, 1962, 1969; Taupin, 1964), which are
solved using the method of Riemann (Sommerfeld,
1949) combined with the boundary-value Green-func-
tion technique. Our approach is inspired by the treatises
of Uragami (1969, 1970, 1971) and Becker (Becker,
1977; Becker & Dunstetter, 1984).

2. Theory

The formalism used in this work is the same as the one
presented in the papers by Thorkildsen & Larsen
(1998b), hereafter called TL-A, Thorkildsen & Larsen
(1998c), TL-B, and Thorkildsen & Larsen (1999), TL-C.
De®nitions of variables and parameters are summarized
in Appendix A.

The Takagi±Taupin equations for a perfect crystal are
written in the representation [TL-A(6), (7)]

@ ~Do=@so � i�oh
~Dh �1�

@ ~Dh=@sh � i�ho
~Do: �2�

By application of the Riemann±Green technique, the
amplitude of the diffracted beam at a point P within the
crystal is expressed by the integral equation [TL-A(12)]

Dkh
�P� � i�hoD�e�o

sin 2�oh

Z
S�P�

so � dS Gh�u0j�o;�h�

� exp�2�i�h�h� exp�ÿ�iK�o��o ��h��: �3�
i�hoGh�u0j�o;�h� is the boundary-value Green
function, the solution of the equations for the
diffracted ®eld subject to the boundary condition
~D�b�o �S� � ��sh ÿ sh�S��. The Green function represents
the propagation of the ®eld incorporating all scattering±
rescattering events along the possible optical routes
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² In the present work, we do not consider the case of specularly
re¯ected waves (Afanasev & Melkonyan, 1983; Alexandrov et al., 1984;
HolyÂ, 1996), thus the angle of the incident wave to the surface is always
much larger than the critical angle for total external re¯ection.
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connecting the source point S and the point P.
u0 � �oh�ho is the coupling parameter. It is in general
a complex quantity owing to anomalous-scattering
processes. The surface integral in equation (3) covers the
part of the entrance surface where a source point can
give rise to a displacement ®eld at P. �o and �h are
difference coordinates between the two points along so

and sh. The excitation error, �h, is associated with the
deviation from the Bragg condition, ��oh, by equation
(39). The real and imaginary components of the mean
electric susceptibility, �o, are explicitly taken into
account by introducing the phase factor, Qh, and the
factor Ah, related to ordinary absorption:

Qh��o;�h� � exp�ÿ2�iK sin 2�oh��oh�h�
� exp��iKj<�oj��o ��h�� �4�

Ah��o;�h� � exp�ÿ�Kj=�oj��o ��h��: �5�
The intensity at an exit point M is then written:

Ih�M;��oh�
� jDkh

�M�j2

� I�e�o j�hoj2�1=sin2 2�oh�
��� R

S�M�
so � dS

�Gh�u0j�o;�h�Qh��o;�h�Ah��o;�h�
���2 �6�

and the power:

Ph���oh� �
R
M

sh � dM jDkh
�M�j2

� I�e�o j�hoj2�1=sin2 2�oh�
R
M

sh � dM
��� R

S�M�
so � dS

�Gh�u0j�o;�h�Qh��o;�h�Ah��o;�h�
���2:
�7�

dS � ŝ dS and dM � m̂ dM are oriented area elements
of the entrance and exit surfaces. The unit normal
vectors, ŝ and m̂, point into and out of the surfaces,
respectively. For a semi-in®nite rectangular crystal, cf.
x2.2, the intensity is assumed not to vary across the area

of the exit surface, A, which is monitored. The asso-
ciated power becomes²

Ph���oh� � A � �sh � m̂�Ih���oh�: �8�
The variation of Ph with ��oh is known as the rocking
curve.

2.1. Finite crystals

Fig. 1 gives geometrical de®nitions for the ®nite
crystals in question. S 2 �A;B� and M 2 �A;D�. Fig. 2
shows an example of the geometrical region structure
associated with a source point, S, on the A and B
entrance surfaces, respectively. These regions give the
domains of applicability for the members of the Bragg
and Laue families of Green functions, cf. TL-B, Section
2.4.2, TL-C, Section 2.3 and Saka et al. (1972a,b, 1973).
At a given point on the exit surface, we add the ampli-
tudes of the diffracted ®eld originating from different
source points. Depending on the position of the source,
these contributions may belong to different regions, m,
and are thus assigned to different Green functions. The
associated integration structure, crucially dependent on
the parameter �, has been properly dealt with in TL-B,
Section 2.5 and TL-C, Section 2.4. It must be empha-
sized that, in the calculation of integrated power, the
scattering contributions iÿ j can be treated indepen-
dently. In the present context, however, the amplitudes
associated with Aÿ j and Bÿ j scattering, j 2 �A;D�,
must be summed prior to the integration over the exit
surfaces. This causes a slight change in the integration
set-up from that previously presented, cf. Thorkildsen &
Larsen (1998d). It is convenient to use dimensionless
coordinates �x; y� and dimensionless parameters³
�u; �; �0; �0� to simplify the integrand and the integra-
tion limits. The details concerning de®nitions of coor-
dinates are given in Appendices A of TL-B and TL-C.

We write:

Ph���oh� � I�e�o j�hoj2v�l=2 sin �oh�P�0�h ���oh�; �9�
where we have introduced a dimensionless quantity, the
so-called intrinsic power:

P
�0�
h ���oh� �def �1=2�� P

j�A;D

R
Mj���

dy

�
��� P

i�A;B

P
m�m0

iÿj
�y�

R
Siÿj�y;m�

dx G
iÿj
h �ujx; yjm�

�Q
iÿj
h �x; y�Aiÿj

h �x; y�
���2: �10�

The rocking curves for ®nite crystals are calculated from
this equation. The important feature is the phase factors
associated with each scattering process iÿ j. They are
labelled according to the location of the source and exit

Fig. 1. Crystal dimensions, surface labels and scattering geometry.
² In this case, we omit M in the expression for the intensity.
³ Cf. equations (28), (32), (38) and (48).
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point. These factors incorporate effects owing to
refraction and the deviation from the Bragg condition.

QAÿA
h �x; y� ! QAÿA

h �x�
� expfÿ�i�0���ohxÿ ���0

oh=2�
� �1� ��=�ÿ�x�g �11�

QBÿA
h �x; y� � exp

ÿÿ �i�0f��ohxÿ ���0
oh=2�

� ��1ÿ ��=�ÿ�x� 2�ÿ��y�g� �12�
QAÿD

h �x; y� � exp
ÿÿ �i�0f��ohxÿ ���0

oh=2�
� ��1� ��=�ÿ�x� 2���ÿy�g� �13�

QBÿD
h �x; y� ! QBÿD

h �x�
� exp

ÿÿ �i�0f��ohxÿ ���0
oh=2�

� ��1ÿ ��=�ÿ�x� 2����g
�
: �14�

When using equations (12)±(14) in equation (10), the
absolute value of the factors exp��i��0

oh�0�ÿ��y�,
exp��i��0

oh�0���ÿy� and exp��i��0
oh�0���� is reduced

to 1.

2.2. Semi-in®nite crystals

In this section, we will use the formalism outlined for
a ®nite perfect crystal to derive the basic expressions for
the diffracted intensity from a semi-in®nite specimen.
The equivalence between the results obtained from the
Takagi±Taupin equations and those from the funda-
mental theory (Pinsker, 1978; Authier, 1996) is shown in
the limit of zero absorption in Appendix B. The
formulas given represent nonsymmetrical scattering.
The ®nal expressions used for numerical calculations of
reference curves are equations (16), (18) and (20) below.
They may be used as alternatives to well established
expressions based on the fundamental theory, cf. Kato
(1992). The formulas are functions of the dimensionless
variables �L (Laue case) and �B (Bragg case), cf. equa-
tions (42) and (43). Conversion to the ��oh scale is
obtained by

��oh � ÿ
�

��oh sin 2�oh

� ���=�ÿ�1=2�L

���=�ÿ�1=2�B

:

�

2.2.1. Laue case. Fig. 3 shows the basic volume asso-
ciated with Laue scattering. The actual Green function is

GBÿD
h �ujxj1� � J0 2fu�2��� ÿ ���=�ÿ�x�xg1=2

ÿ �
:

Since no lateral boundaries limit the wave propagation,
the expressions for the diffracted ®eld amplitude and the
intensity do not depend upon the position y of the exit
point M. The amplitude of the displacement ®eld is
expressed by

Fig. 3. Basic volume for Laue scattering.

Fig. 2. (a) Laue and (b) Bragg families of regions.

Fig. 4. Basic volume for Bragg scattering ± Darwin limit.
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Dkh
� i�ho`D

�e�
o

R2�ÿ�
0

dx GBÿD
h �ujxj1�

� exp�2�i�h`x� expfÿ�iK�o

� ��1ÿ ��=�ÿ�x� 2����`g: �15�
Introducing �L, the parameters �L, ��L, �L, ��L

according to equations (36), (45), (50), (51) and chan-
ging integration variable

z � x=2��ÿ;

we obtain the following expression for the intensity (cf.
Authier & Simon, 1968):

Ih��L� � I�e�o �j�hoj=j�ohj���ÿ=��� exp�ÿ�L�L�

�
�����L

R1
0

dz J0f2�L��1ÿ z�z�1=2 exp�i�0�g

� exp�2i�L��L ÿ��L�z� exp�ÿ��L�Lz�
����2: �16�

2.2.2. Bragg case ± Darwin solution. Fig. 4 gives the
volume for Bragg scattering in the Darwin limit. It is
essential that the scattering volume does not encounter
the `back' surface of the crystal.² In addition, the coor-
dinate of the exit point M should extend to in®nity if the
standard top-hat shape (Darwin, 1914) for the diffracted
intensity function is to be obtained. The entire scattering
volume belongs to the region m � 1 associated with
A±A scattering. The actual Green function thus
becomes:

GAÿA
h �ujxj1� � J0 2 u

��
�ÿ

� �1=2

x

" #
� J2 2 u

��
�ÿ

� �1=2

x

" #
and the ®eld amplitude is:

Dkh
� lim

y!1
i�ho`D�e�o

R��ÿ=���y
0

dx GAÿA
h �ujxj1�

� exp�2�i�h`x� exp ÿ�iK�o 1� ��=�ÿ
ÿ �

`x
� �

:

�17�
Introducing �B, the parameters ��B, �B according to
equations (46), (52) and changing integration variable,

z � �2`=�oh����=�ÿ�1=2
x;

we obtain the intensity of the diffracted wave as

Ih��B� � I�e�o �j�hoj=j�ohj���ÿ=���

�
���� 1

2

R1
0

dz fJ0�z exp�i�0�� � J2�z exp�i�0��g

� exp�i��B ÿ��B�z� exp�ÿ�Bz�
����2: �18�

2.2.3. Bragg case ± Ewald solution. The basic regions
giving the Ewald solution for Bragg scattering
(Zachariasen, 1945) are shown in Fig. 5. Now the ®eld
propagation experiences the effects of the `back' surface
creating an in principle in®nite region structure. In the
limit when M approaches in®nity, we can express the
®eld amplitude by

Dkh
� lim

pmax!1
i�ho`D�e�o

� Ppmax

p�0

R�2p�2��ÿ

2p�ÿ
dx GAÿA

h �ujxj2p� 1� exp�2�i�h`x�

� exp�ÿ�iK�o�1� ��=�ÿ�`x�; �19�

i.e. we sum the contributions from each region. Intro-
ducing the parameter �B and changing variable,

z � x=�ÿ;

we ®nd:

Ih��B� � I�e�o �j�hoj=j�ohj���ÿ=���

�
������B=2�P1

p�0

R�2p�2�

2p

dz GAÿA
h ��Bjzj2p� 1�

� exp�i��B ÿ��B��Bz� exp�ÿ�B�Bz�
����2; �20�

or with �z � �B z, we have:

Fig. 5. Bragg scattering in the Ewald limit.² This is in popular terms the de®nition of a `thick' crystal.
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Ih��B� � I�e�o �j�hoj=j�ohj���ÿ=���

�
���� 1

2

R1
0

d�z fJ0��z exp�i�0�� � J2��z exp�i�0��g

� exp�i��B ÿ��B��z� exp�ÿ�B �z�
� ��B=2�P1

p�1

R1
2p

dz wAÿA
h ��Bjzj2p�

� exp�i��B ÿ��B��Bz� exp�ÿ�B�Bz�
����2: �21�

Equation (21) shows that the Ewald solution to the
diffracted intensity is built from the Darwin solution, cf.
equation (18), with addition of terms originating from
the `back' surface. To arrive at equation (21) from (20),
we have used the following results for the Bragg family
of Green functions, cf. Pinsker (1978, equation [11.76]):

GAÿA
h ��Bjzj2p� 1�
� GAÿA

h ��Bjzj2pÿ 1� � wAÿA
h ��Bjzj2p�

GAÿA
h ��Bjzj1�
� J0��Bz exp�i�0�� � J2��Bz exp�i�0��

wAÿA
h ��Bjzj2p� � �ÿ1�p

�
zÿ 2p

z� 2p

� �pÿ1

� J2pÿ2f�B�z2 ÿ �2p�2�1=2 exp�i�0�g

� 2
zÿ 2p

z� 2p

� �p

J2pf�B�z2 ÿ �2p�2�1=2

� exp�i�0�g �
zÿ 2p

z� 2p

� �p�1

� J2p�2f�B�z2 ÿ �2p�2�1=2 exp�i�0�g
�
:

2.3. Kinematical limit

The kinematical limit is obtained for u! 0, i.e. the
ratio of characteristic length, `, to extinction length, �oh,
tends to zero. This ensures that the diffracted ®eld is
built from single scattering events only. The regions that
contribute in this limit are m � 1 associated with Bragg
scattering (source point on surface A) and m � 1; 2
associated with Laue scattering (source point on surface
B). The relevant Green functions are all equal to unity.
Furthermore, <�o and =�o are set to zero. P

�0�
h ���oh� in

Fig. 6. Germanium (111), l = 5 mm, varying t.
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the case of nonsymmetrical scattering is then given by
equations (22) and (23) below:
For 0 � �<�ÿ=�ÿ:

P
�0�
h � �1=2��

� R�=�ÿ
0

dy

���� R2�ÿ�ÿy

0

dx exp�ÿ�i�0��ohx�
����2

� R1=�ÿÿ�=�ÿ

0

dy

���� R2�ÿ�
0

dx exp�ÿ�i�0��ohx�
����2

� R1=�ÿ
1=�ÿÿ�=�ÿ

dy

���� R2�ÿÿ2�ÿ�ÿy

0

dx exp�ÿ�i�0��ohx�
����2�

� �2��0�ÿ���oh � 2��0��oh��ÿ ÿ �ÿ��
� sin2���0�ÿ���oh� ÿ sin�2��0�ÿ���oh��
� ����0��oh�3�ÿ�ÿ��ÿ1: �22�

For � � �ÿ=�ÿ:

P
�0�
h � �1=2�� R1=�ÿ

0

dy
R2�ÿ�ÿy

0

dx exp�ÿ�i�0��ohx�
�����

�����
2"

� R�=�ÿ
1=�ÿ

dy
R2�ÿ
0

dx exp�ÿ�i�0��ohx�
�����

�����
2

� R1=�ÿ
0

dy
R2�ÿÿ2�ÿ�ÿy

0

dx exp�ÿ�i�0��ohx�
�����

�����
2#

� �2��0�ÿ��oh ÿ 2��0��oh��ÿ ÿ �ÿ��
� sin2���0�ÿ��oh� ÿ sin�2��0�ÿ��oh��
� ����0��oh�3�ÿ�ÿ��ÿ1: �23�

Becker & Coppens (1974) extended the theory intro-
duced by Zachariasen (1967) and gave a general formula
for the diffracted power, Pk, for a convex perfect crystal
in the kinematical limit. With their notation [equations
(4), (C7)]:

Pk�"1� � I�e�o Q
R
v

dv � sin2��"1��=��"1��2; �24�

where "1 � ��oh and Q is the average scattering cross
section per unit volume of the crystal. The parameter �
is de®ned by � � lh sin 2�oh=� with lh being the thickness
of the crystal parallel to the diffracted beam. Applying
this formalism to a rectangular crystal gives results
identical to equations (22) and (23).

3. Results and discussion

The above presented theory was implemented in
Mathematica version 3.0 (Wolfram, 1996).

As model systems for the simulations, we chose silicon
and germanium. The structure factors were calculated at
room temperature using atomic form factors from
Waasmaier & Kirfel (1995) and anomalous-scattering
corrections based on the program FPRIME (Cromer &
Liberman, 1970; Cromer, 1995). All the calculations
were performed at the wavelength � � 1:2 AÊ , using
C � j cos 2�ohj for the polarization factor. Thus, only a
single state of polarization is covered in this work.
Table 1 summarizes some parameters for the re¯ections
addressed. In the plots, Figs. 6±18, the abscissa, ��oh, is
given in units of 10ÿ3�. The ordinate, P0

h���oh� for ®nite

Fig. 7. Germanium (111), crystal thickness 5 mm.

Fig. 8. Germanium (111), t = 5 mm, varying l.
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crystals, Ih���oh�=I�e�o for semi-in®nite crystals, is in
arbitrary units.

3.1. t � l crystal cross section

In order to exemplify and assess some features of
dynamical rocking curves from perfect ®nite crystals,
we present a set of simulations for different crystal
geometries. Figs. 6(a)±(i) depict the rocking curves for a
t � l cross section Ge crystal when l is kept constant
equal to 5 mm and t is varied. The re¯ection studied was
111. With quite a large range of aspect ratios, we
proceed from a Laue regime for low values of t=l (< 2)
via an `intermediate' interval (2< t=l< 4) to a Bragg
dominated regime at large values of t=l (> 4). In this
context, we note the shift of the curves towards larger
values of ��oh as t=l increases. This is due to the
refraction effect, a feature which for the symmetrical
case is associated with Bragg scattering, cf. equations
(11)±(14). The rocking curves should be compared with
the Laue and Bragg±Ewald solution for a semi-in®nite
crystal plate given in Fig. 7. We notice that the rocking
curves for small t=l values are broader than the Bragg±
Ewald width, �BE � �4� 61=2=9��D. �D is the well known
Darwin width, see for instance Coppens (1992). This
however critically depends upon the value of t=l. As this

ratio grows, the full width at half-maximum (FWHM) of
the rocking curves gradually decreases towards the
Bragg±Ewald width.

In Fig. 8, t is constant equal to 5 mm and l varies. The
shape of the rocking curves is rather insensitive to this
variation, since no new geometrical regions are created
with increasing l. Thus, Laue scattering associated with
region m � 1 dominates.

3.2. t � t crystal cross section

In Figs. 9 and 10, we have shown the results for the Ge
and Si 111 re¯ection in a square cross section (t � t)
crystal. For germanium, the Laue and Bragg±Darwin
solutions for a crystal plate of thickness 40 mm are
shown in Fig. 11. Fig. 12 shows the Laue and Bragg±
Ewald solutions for silicon for the same geometry.
Overall features are well described with a Laue curve
superimposed on a smooth Bragg±Darwin background.
To address the effect of the mixed scattering terms
(AÿD and Bÿ A), we have in Fig. 13 plotted the
difference between two calculated rocking curves with
these terms respectively included or not included. It is
seen that for a squaric crystal cross section and
symmetrical diffraction the main contributions from

Fig. 9. Germanium (111), t � t crystal, varying t.

Table 1. Some re¯ection parameters at � � 1:2 AÊ

�oh: Bragg angle. ��0
oh: shift in Bragg angle. �oh: extinction length. �BE: Bragg±Ewald width.

Element hkl �oh ��� ��0
oh �10ÿ3�� �oh (mm) �BE �10ÿ3��

Ge 111 10.584 2.69 4.10 3.22
Si 111 11.032 1.40 8.53 1.49
Si 333 33.034 0.558 41.1 0.123
Si 135 40.814 0.530 110 0.0209 ( > 0)

0.0921 ( < 0)
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mixed terms occur in the central regions of the rocking
curves.

For comparison with a real experiment, the intrinsic
dynamical rocking curves should be convoluted with a
smearing function representing the incoming beam
divergence. Assuming synchrotron radiation from a
bending magnet, we use a Gaussian with FWHM equal
to 1.5 � 10ÿ3�. The results of this convolution are shown
for germanium in Fig. 14. We observe that the rocking
curves retain an asymmetrical shape owing to ®nite
crystal dynamical effects ± i.e. the joint Laue and Bragg
scattering contributions separated due to refraction. A
signi®cant peak splitting owing to such effects is seen by
studying the Si 333 re¯ection ± cf. Fig. 15. Depending on
the crystal size, the relative strength of the Laue and
Bragg peaks is interchanged.

3.3. Effect of re¯ection asymmetry

So far we have only addressed cases involving
symmetrical re¯ections. The algorithms for calculating
the rocking curves are, however, general and include the
possibility of having a nonsymmetrical re¯ection as
well.² An example is shown for the Si 135 re¯ection
(t � t crystal geometry) which has an asymmetry angle³
jj � 28:561�. As seen in Fig. 16, this creates asymmetric
rocking curves with a (small) buildup of power on the
low-angle side of the main peak. This buildup develops
into an auxiliary peak for increasing crystal size.
Correspondingly, simulations for the negative nonsym-
metrical case of the Si 135 re¯ection show increased

power on the high-angle side, cf. Fig. 17. There is also a
small shift in the position of the main peaks in the two
cases. Here the dominant contributions are due to
AÿD scattering ( positive) and Bÿ A scattering (
negative). For this re¯ection, ��0

oh � 0:53 � 10ÿ3�.
When  is positive, ��=�ÿ � 2:77 and ��=�ÿ � 0:227.
A negative  gives the inverse values for these ratios.
The main peak in Fig. 16( f ) is found for
��oh � 0:33� 10ÿ3�, in accordance with the shift
calculated from equation (13). Similarly, for the negative
case, the main peak is located at ��oh � 0:17� 10ÿ3� in
accordance with equation (12). The FWHM of the main
peaks in the two cases is approximately equal and, for
t � 150 mm, FWHM� 0:05� 10ÿ3�. For the setting with
negative , the comparison with the Bragg±Ewald width
loses signi®cance since this limit refers to multiregion
Aÿ A scattering.§ The position of auxiliary maxima
are ��oh � ÿ0:47� 10ÿ3� for  � �28:561�, corres-
ponding to Bÿ A and BÿD scattering, and
��oh � �1:43� 10ÿ3� for  � ÿ28:561�, corresponding
to Aÿ A and AÿD contributions. For increasing
crystal size, the auxiliary peaks will decrease ( > 0) and
increase ( < 0) with respect to the main peaks since
pure Bragg scattering (Aÿ A) becomes more dominant.

3.4. The kinematical limit

With the crystal dimensions reduced to 1 � 1 mm, the
rocking curves for the 111 re¯ections of germanium and
silicon almost coincide. Now the crystal dimension is
much smaller than the actual extinction lengths and the
calculation approaches the kinematical limit of single

Fig. 10. Silicon (111), t � t crystal, varying t.

² The following conditions must be ful®lled: jj � �oh, �oh � �=4. Thus
there is always a Bragg scattering regime present.
³ The entrance surface A is oriented parallel to �111�.

§ In fact, the width of the auxiliary peak at ��oh � �1:43� 10ÿ3�

approaches the Bragg±Ewald width for a crystal size larger than 1 mm.
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scattering. P
�0�
h then becomes independent of the

expansion parameter, u0, which is associated with
multiple-scattering events. Fig. 18 gives the results
for silicon 111 for the crystal dimensions: (a)
t � l � 0:2� 1:0 mm and (b) t � l � 1:0� 0:2 mm.
These simulations are in accordance with calculations

based on equation (C7) of Becker & Coppens (1974).
The variation of FWHM for rocking curves calculated in
the kinematical limit for a t � t crystal is shown in
Fig. 19.

Although the kinematical limit is reproduced within
the present formalism, we would like to draw attention
to the following point: In the derivation of the Takagi±
Taupin equations, the electric susceptibility is expanded
in a Fourier series assuming an in principle unbounded
crystal which causes the coupling parameter, �pq, to be
independent of crystal shape. This should encourage a
careful re-examination of the derivation of the Takagi±
Taupin equations with focus on crystal ®niteness.

4. Conclusions

In this paper, we have successfully demonstrated how
the Takagi±Taupin formalism can be used to calculate
rocking curves from ®nite perfect crystals. It is veri®ed
that the traditional Laue and Bragg±Ewald/Bragg±
Darwin solutions of the dynamical theory of X-ray
scattering are obtained in the limit of a semi-in®nite
perfect-crystal plate. In addition, kinematical results in
the limit of small crystal dimensions are retrieved. The
results show signi®cant pro®le asymmetries inherent in
the dynamical contributions from ®nite crystals. The
rocking curves often have a full width at half-maximum
larger than the Bragg±Ewald width for corresponding
semi-in®nite samples. Different refraction effects and
different relative contributions for Laue and Bragg
scattering may lead to shifts in the peak positions.Fig. 11. Germanium (111), crystal thickness 40 mm.

Fig. 12. Silicon (111), crystal thickness 40 mm.
Fig. 13. Difference plots. Effects from mixed scattering terms.

Re¯ection (111). Crystal dimensions: 20� 20 mm.
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Generally, the shape of the rocking curves deviates
signi®cantly from those predicted for semi-in®nite
crystals. Care must therefore be shown when analyzing
experimental rocking curves from small perfect-crystal
samples. For such cases, the Takagi±Taupin approach is
more versatile because it explicitly embraces crystal
®niteness.

The present implementation of the theory using
Mathematica puts some practical limits on the cases that
may be studied since the computing time increases very
rapidly with increasing values of the parameters �, �0 and
u.

APPENDIX A
De®nitions

A1. General de®nitions

The de®nitions of the parameters appearing in the
paper are given in Table 2. Throughout this work, we
have used `crystallographic' notation, i.e. the mathe-
matical representation of a plane wave is exp�ÿ2�iK � r�
with wavenumber jKj � K � 1=�.

A2. Scattering parameters

Fourier coef®cient of the electric susceptibilty:

�pÿq � ÿ�re�
2=�Vc�Fpÿq: �25�

Coupling parameter:

�pq � ÿ�KC�pÿq � �re�C=Vc�Fpÿq � j�pqj exp�i�pq�:
�26�

Extinction length:

�oh � 1=�j�ohjj�hoj�1=2: �27�
Expansion parameter:

u � �oh�ho l=2 sin �oh� �2: �28�
Phase factor:

�0 � ��oh � �ho�=2: �29�
Darwin width:

�D �
2re�

2CjFhj
�Vc sin 2�oh

��
�ÿ

� �1=2

: �30�

Kinematical cross section per unit volume:

Q � jreFhC=Vcj2��3=sin 2�oh�: �31�

Fig. 14. Germanium (111), t � t crystal, convoluted rocking curves.

Table 2. De®nitions of the parameters

re Classical electron radius

� Wavelength
Vc Volume of unit cell

Fpÿq Structure factor for re¯ection pÿ q

C Polarization factor 1 _ j cos 2�ohj
<�o Real part of average electric susceptibility

=�o Imaginary part of average electric susceptibility

v Volume of crystal

�oh Bragg angle

so Coordinate along incident beam

sh Coordinate along diffracted beam

D�e�o Amplitude of incoming plane wave

I�e�o Intensity of incoming plane wave
~Do Amplitude of transmitted wave
~Dh Amplitude of diffracted wave
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A3. Geometry related parameters

Basic parameters:

� � �t=l� tan �oh �32�
` � l=2 sin �oh �33�
�� � cos �oh=cos��oh � � �34�
�� � sin �oh=sin��oh � �: �35�

Dimensionless length parameters:

�L � �2�`=�oh�����ÿ�1=2 �36�
�B � �2`=�oh�����ÿ�1=2 �37�
�0 � �2l=�� cos �oh: �38�

A4. Deviation parameters

Excitation error:

�h � ÿK sin 2�oh��oh: �39�

Shift in Bragg angle:

��0
oh � j<�oj=sin 2�oh: �40�

Related parameters:

�0 � ��h�oh �41�
�L � �0��ÿ=���1=2 �42�
�B � �0��ÿ=���1=2 �43�
�� � ÿ�Kj<�oj�oh �44�

��L � ��
1
2 ���ÿ=���1=2 ÿ ���=�ÿ�1=2� �45�

��B � ��
1
2 ����=�ÿ�1=2 � ��ÿ=���1=2�: �46�

A5. Absorption parameters

Linear absorption coef®cient:

� � 2�Kj=�oj: �47�
Dimensionless absorption coef®cients:

�0 � ��l=2 sin �oh� �48�
�� � ��oh: �49�

Fig. 15. Silicon (333), t � t crystal, varying t.
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Related parameters:

�L � �����=�ÿ�1=2 �50�
��L � ��

1
2 ���ÿ=���1=2 ÿ ���=�ÿ�1=2� �51�

�B � ��
1
4 ����=�ÿ�1=2 � ��ÿ=���1=2�: �52�

APPENDIX B
Transition to standard results

We here brie¯y outline the equivalence between the
results given in x2.2 and those obtained from the

fundamental equation of dynamical theory. At this
stage, =�o � 0. Thus, �0, �L, ��L and �B are all zero.

B1. Laue case

The result from the Takagi theory is given in equation
(16). We have to evaluate the integral (� � �L ÿ��L):

IL � �L

R1
0

dz J0f2�L��1ÿ z�z�1=2g exp�2i�L�z�
���� ����2:

With change of variable from z to �z,

z � 1
2 �1� �z�;

Fig. 16. Silicon (135),  � 28:561�, t � t crystal, varying t.

Fig. 17. Silicon (135),  � ÿ28:561�, t � t crystal, varying t.
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we obtain

IL � �L

R1
0

d�z J0 �L�1ÿ �z2�1=2
� �

cos �L��z

���� ����2:
Using equation [6.677.6] of Gradshteyn & Ryzhik (1980)
with a � 1, b � �L and c � �L�, we have

IL � sin2 �L�1� �2�1=2=�1� �2�:
Thus, in the case of a non-absorbing crystal, we ®nd for
the ratio of powers:

Ph

P
�e�
o

� ��
�ÿ

Ih

I
�e�
o

� sin2 �L�1� �2�1=2

1� �2
: �53�

This is in agreement with Authier [1996, equations
(5.1.6.6) and (5.1.6.7)].

B2. Bragg±Darwin case

Starting with equation (18), we have to evaluate the
integral (� � �B ÿ��B):

IB � 1
2

R1
0

dz �J0�z� � J2�z�� exp�i�z�
���� ����2:

Using the identity

J0�z� � J2�z� � 2J1�z�=z

and processing the tabulated integral equation [6.621.1]
of Gradshteyn & Ryzhik (1980):²R1

0

�J1�z�=z� exp�i�z� dz

� i�� �1ÿ �2�1=2 j�j � 1

i�ÿ i sign�����2 ÿ 1�1=2 j�j � 1,

�
�54�

we obtain for the ratio of powers:

Ph

P
�e�
o

� ��
�ÿ

Ih

I
�e�
o

� 1 j�j � 1

j�j ÿ ��2 ÿ 1�1=2
� �2 j�j � 1,

�
�55�

which corresponds to the standard result of the funda-
mental theory for Bragg scattering from a `thick' crystal
[Authier, 1996, equation (5.1.7.1)].

B3. Bragg±Ewald case

Equation (21) is expressed by (� � �B ÿ��B):

Ih � I�e�o �j�hoj=j�ohj���ÿ=���jih��B�j2

with

ih��B� �def ��B=2� R1
0

dz �J0��Bz� � J2��Bz�� exp�i��Bz�

� ��B=2�P1
p�1

R1
2p

dz wAÿA
h ��Bjzj2p� exp�i��Bz�:

�56�
Using equation [6.646] of Gradshteyn & Ryzhik (1980):

�B

Z 1
2p

dz
zÿ 2p

z� 2p

� �p

J2pf�B�z2 ÿ �2p�2�1=2g exp�i��Bz�

�

exp�ÿ2p�B�1ÿ �2�1=2�
�1ÿ �2�1=2

��i�� �1ÿ �2�1=2�2p j�j � 1

i sign��� expf2p�B sign���i��2 ÿ 1�1=2g
��2 ÿ 1�1=2

�fi�ÿ i sign�����2 ÿ 1�1=2g2p j�j � 1:

8>>>>>>><>>>>>>>:

Fig. 18. Silicon (111). Rocking curves in the kinematical limit.

Fig. 19. Full width at half-maximum (10ÿ3�), for a t � t crystal as
predicted by the kinematical theory, t in mm. (a) �oh � 30�, (b)
�oh � 10�. ² sign��� � �=j�j.
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Here we analyse the case j�j � 1. A full account
including j�j> 1 is given elsewhere (Thorkildsen &
Larsen, 1998d). Introducing the functions j��B; m�:

j��B; m� �def P1
p�1

�ÿ1�p�i�� �1ÿ �2�1=2�2�p�m�

� exp�ÿ2p�B�1ÿ �2�1=2�
� �i�� �1ÿ �2�1=2�2�m�1�fÿ1� 2�2

ÿ 2i��1ÿ �2�1=2 ÿ exp�2�B�1ÿ �2�1=2�gÿ1

and J��B�:
J��B� �def

j��B;ÿ1� � 2j��B; 0� � j��B; 1�
� 4�ÿ1� �2��1ÿ 2�2 � 2i��1ÿ �2�1=2�
� fÿ1� 2�2 ÿ 2i��1ÿ �2�1=2

ÿ exp�2�B�1ÿ �2�1=2�gÿ1;

we ®nd, using equation (54),

ih��B� � i�� �1ÿ �2�1=2 � J��B�=2�1ÿ �2�1=2

� �ÿ i�� ÿ�1ÿ �2�1=2f1� exp�2�B�1ÿ �2�1=2�g�
� fÿ1� exp�2�B�1ÿ �2�1=2�gÿ1

�ÿ1
:

It follows that

jih��B�j2 � i�h��B�ih��B�
� fÿ1� exp�2�B�1ÿ �2�1=2�g2
� ÿÿ 4�2 exp�2�B�1ÿ �2�1=2�
� f1� exp�2�B�1ÿ �2�1=2�g2�ÿ1

� sinh2 �B�1ÿ �2�1=2

� �1ÿ �2 � sinh2 �B�1ÿ �2�1=2�ÿ1:

In general,

Ph

P
�e�
o

� ��
�ÿ

Ih

I
�e�
o

�

sinh2 �B�1ÿ �2�1=2

1ÿ �2 � sinh2 �B�1ÿ �2�1=2

j�j � 1
sin2 �B��2 ÿ 1�1=2

�2 ÿ 1� sin2 �B��2 ÿ 1�1=2

j�j � 1,

8>>>>>><>>>>>>:
�57�

which is in accordance with the expressions given by
Authier [1996, equations (5.1.7.6a) and (5.1.7.6b)].

Parts of this work have been presented at seminars in
condensed matter physics at the ESRF, and at the
annual meeting of the Norwegian Physical Society.
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